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How Many IID Samples Does it Take

to See All the Balls in a Box?

Thomas M. Sellke

Purdue University

Abstract

Suppose a box contains m balls, numbered from 1 to m. A random number of balls

are drawn from the box, their numbers are noted, and the balls are then returned to the

box. This is done repeatedly, with the sample sizes being lid. Let X be the number of

samples needed to see all the balls. This paper derives a simple but typically very accurate

approximation for EX in terms of the sample size distribution. The justification of the

approximation formula uses Wald's identity and Markov-chain coupling.

1. Introduction

Suppose we have a box containing m identical white balls. Let K 1 ,K 2 ,... be iid

random variables taking positive integer values. We randomly sample K1 A m balls without

replacement, paint the sampled balls red, and return them to the box. Then K2 A m balls

are sampled, painted red, and returned to the box, etc. Let X be the number of samples

needed to paint all the balls red. When max Ki is with high probability small compared
l<i<X

to m, a good approximation for DX is given by

m M--1 r
M r P{K > r}) ,

i=1 + M-1 j

i---O I i=O --

(A K without a subscript represents a generic Ki.) For instance, if m = 10 and the

(Ki - 1)'s are binomial (4, 1), then the true value of EX is 8.8937, while (1.1) gives

8.8933. For m = 20 and (Ki - 1)'s which are binomial (4, 1), the values are EX =

22.90753529760067 and (1.1) = 22.90753529760074. For m = 10 and Ki's which are

uniformly distributed on {1,2,3,4,5}, EX = 8.74239 and (1.1) = 8.74236. For m = 20,

the values are EX = 22.740208948996 and (1.1) = 22.740208948981. (The true values

were computed by Jacek Dmochowski using exact recursive formulas suggested by Larry
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Shepp.) It is difficult to determine the size of the approximation error when m is much

larger than 20. Even with double-precision computation, the round-off error seems to

dominate the true approximation error.

The justification of formula (1.1) involves Wald's identity (which gives the first term

of (1.1) as a first approximation to EX) and coupling (which gives the second term of

(1.1) as a correction for "boundary overshoot error" in the first term). A bound on the

difference between EX and (1.1) can be given in terms of, say, P{.max Ki > M) and the

probability that a certain Markov-chain coupling is unsuccessful.

Section 4 gives some explicit bounds on the approximation error. These bounds are

generally very crude, but they show that the approximation error converges to zero faster

than exp(--m ½) as m -- oo when the (fixed) K-distribution has a finite moment generating

function near 0. If the Ki's are bounded, or if the hazard function of the Ki's is bounded

below by b > 0, then the approximation error converges to zero exponentially (in m) as

m --- C0.

Section 5 presents a generalization of (1.1) applicable to the case where some of the

balls in the box are red to begin with, and where only a specified number of the white

balls need to be painted red.

2. Application of the Wald Identity

Assun~a the LL,. are numbered 1, 2,..., m. Sampling k balls without replacement can

of course be done by sampling with replacement until k distinct balls have been drawn, with

repetitions ignored. This section will relate the sampling-without-replacement scenario

described in the introduction to the process of repeatedly drawing balls one at a time,

with replacement. Analyzing the number T of single-ball draws needed to see all the balls

is easy: it's just the standard coupon collector problem. Except for "boundary overshoot

error," the Wald identity will give an expression for EX in terms of Er.

Suppose our successive samples of balls are obtained as follows. First we see the value

of K1 . Then we sample balls one at a time, with replacement, until K1 A m distinct balls

have been obtained. Let D1 be the number of single-ball draws needed to obtain the

required Ki A m distinct balls. Then we see K 2 and sample balls one at a time, with
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replacement, until K 2 A m distinct balls have been obtained to form the second sample,

etc. Let Di be the number of single-ball draws needed to obtain the Ki A m distinct

balls in the ith sample. Let F, be the a-field generated by all observations made while

generating the first i samples. Thus, Yi is generated by K 1 , K 2 ,..., Ki and by the sequence

of D, + ... + Di single-ball draws needed to obtain the first i samples. The Ki's are of

course assumed to be iid. The ball numbers of the balls obtained on successive draws are

iid, uniformly distributed on {1, 2,. .. , m}, and independent of the Ki's. The Di's are also

iid.

Let r be the number of single-ball draws needed to see every ball at least once. The

number of additional single-ball draws needed to see a new ball after j balls have already

been seen is a geometric (-j-) random variable independent of everything that has come

before. (This is the standard coupon collector argument.) Adding up expectations yields
r~n--

(2.1) E7= ZE =m M
j=O i=1

Again letting X be the number of samples needed to see all m balls, we see that

X = inf{i: D 1 + D2 + ... + Di > r7.

Furthermore, X is an F'i stopping time. Thus, by Wald's identity and the fact that the

Di's are iid,

(2.2) E(Di +... + Dx) = EX EDi.

The expectation ED 1 is easy to find in terms of the distribution of K1 . The coupon

collector argument shows
k-I

E(DuIK1 A m = k) = --
i n -

so
m k--1

(2.3) E(D) = EPK Am= k}E m

k=1 i=O

rn-I r

E "- P{KiAm=k}
i=0 M Ik=i+l

rn-I
m--1- : M----- P{K > i}.
i=0
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x
Now we need to relate E(DI + ... + Dx) to Er. The sum E Di and r are of course

I
equal except for the "overshoot" given by the number of draws needed to complete the

last sample after the last new ball has been obtained on the 7- 1h draw. Let V be the size

of this overshoot, so that

(2.4) EA 7

From (2.1), (2.2), (2.3), and (2.4) we get

x

ED,

E7 + EV
ED 1

m

m ++EV

E ';T-P{X > i}
i=O

Let J be the number of distinct balls already in the last sample after the r th draw.

Given that J = j and Kx = k (which is only possible for k _ j), the coupon collector

argument shows

k--1(2.6) E(VIJ = j, Kx -- k)= m

(If k = j, the right side is supposed to be zero.) Furthermore, the conditional distribution

of Kx given that J = j is exactly the same as that of K1 given that K1 Ži j. (This is

perhaps even more obvious when the sampling is done as described in Section 3.) Thus,

m k-i m
(2.7) E(VIJ =j)= E P{K = kK > j} m m r

k=j+1 7=-

M--1 m

m m r E P{K = kK Žj}
r7- k=r+l

m-1

SP- >P{K> rK > j
7=-)
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(Note that (2.7) is zero for j = m.) If we can get a good approximation for the distribution

of J, we can combine this with (2.7) to approximate EV in (2.5). The next section will

show that P{J -j} is typically approximately proportional to
in m

P{K > -1 P{KK j},
M-(j- 1) m-j +

so that

(2.8) P{J j} mi'i- P {K :il

E m()P{K > £ - 1}

"M P{K > j}

i-7 PIK > i}
i=0

Combining (2.8) with (2.7) yields

rn-1
(2.9) EV= E E(VJ= j)Pg = i)

j=l

Mr-1 M--1

"" IK >-P{ rK > j}--TlP{K >j
3=1 T=j mrnw

Z ý_P{K > i}
i=0

rn-i r
m-_ PIK > r} E m-M+l

,----P{K > i}
i=0

Substituting this approximation for EV into (2.5) gives (1.1).

3. Approximation of P{J = j} by Coupling

This section will justify the approximation (2.8) above:

m_•+iP{Ki Ž-3}
(3.1) P{J r J+ P ,n-i , j = 1,2,...,m.

-iPP{K > i}
i=0

The idea is to construct a finite-state-space Markov chain with m absorbing states labelled

1, 2,..., m for which J equals the label of the state where absorption occurs. This chain
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is coupled to an approximating chain for which the distribution of the absorbing state is

given (modulo truncation) by the right side of (3.1). (For a general account of the coupling

technique, see Lindvall (1992).)

For the purposes of this section, it will be better to use a recipe for generating the

required samples which is different from that of the previous section. To start, draw a

single ball from the box. Then ask whether the next ball should continue the first sample.

The probability of continuing the first sample should be

P{K Am >1I}
(3.2) c, =:

P{KAm > 1}"

If we decide to continue the first sample, draw another ball from the box without replacing

the first ball. With probability

P{KAm=I}1

(3.3) h, =: 1- c, = P{KA m 11'

we decide to end the first sample with the first ball. In this case, we return the first ball

to the box and then draw the first ball of the second sample.

The general rule for sampling goes as follows. If the number of balls already in the

current sample is a, we decide to continue this sample with the next ball with probability

P{K Am > a}(3.4) _.=

P{K Am > a}'

With probability

P{K ̂ mr = a}
(3.5) ha =: 1 -C = P{KAmŽa}

P{ K A m > al '

we end the current sample, return all balls in this current sample to the box, and then

draw the first ball of the next sample. (Note that h. is the hazard function of the K

distribution.) Balls are returned to the box only when we decide that the current sample

is complete and that it's time to start a new one. It should be obvious that this protocol

really does generate independent samples whose common sample size distribution is as

required.

Let 9, be the a-field generated by everything that happens up to and including the

n'4 ball-draw (but not including the decision as to whether the n'h ball is the last ball of
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the sample containing it). Let An be the number of balls already in the current sample

after the nth ball-draw. Let 1/, be the number of "virgin" balls left to be drawn for the

first time after the nth draw. Define the g, stopping time To by

(3.6) To = inf{n: l/, = 0},

so that To is the number of ball draws needed to get all balls at least once (according to

the sampling protocol of this section.) Note that AT0 = J. Define

(3.7) An =: AATo and V, =:V ,AT0.

Then {(A,, V,)},'= is a Markov chain adapted to 9,n. Since we start with n = 1, the

starting state is(l, m - 1). The state space is

SM =:{(a,v): a E {1,2,...,m}, v E {O, 1,...,m-1}, a+v<m}.

For v > 1, the transition probabilities are

(3.8) P{(A.+ 1 , Vn+ 1 ) = (a',v')I(An, Vn) = (a,v)}

h.a`v for (a',v') = (1,v)
= hL for (a',v') = (1,v- 1)

rm-a--v for (a', v')=(a+ ,v)
= Ca rn-a
-" caV-'_ for (a',v') = (a + 1,v - 1)

= 0 othe. •-ite.

Since the (A., Vn) chain stops at time To, states of the form (a, 0) are of course absorbing,

so that

(3.9) P{(An+1 , Vn+) = (a', v')I(An, Vn) = (a,0)}

= 1 if(a',v')=(a,0)
= 0 otherwise.

Since AT, = J, we can analyze the behavior of J by getting the approximate probabilities

of absorption at each of the m absorbing states (a, 0).

Fix b E {1, 2,..., m - 1). For a = 1, 2,..., m, define

(b)= Ica ifa<b
(3.10) Ca 0 ifa>b
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and

(3.11)) 
h if a> < b

Let (A~n", V,,(b)) be a Markov chain on Sm whose transition probabilities are given by (3.8)

and (3.9), except with c and h~b) in place of ca and ha. Let 9() be the filtration for this

chain.

As far as the transition probabilities are concerned, the ( VA•b)) chain is like the

(An, Vn) chain with K A b in place of K as the generic sample size. If P{K > b) = 0, the

transition probabilities for the two chains are of course exactly the same. Our coupling

construction below will work well when we can choose a b not too close to m for which

P{K > b} is so small that P{maxK, > b} is itself negligible.

The {(A~,b) Vfb))}. Markov chain will be started with V m - b. The value of

A(b) will be random, with

__M 
m P{K> a]

(3.12) P{A(b) = a)- -+ 1 a<b.

Z-iP{K>i}i=0

(Compare (3.12) to (3.1). The distribution for A(b) in (3.12) is the distribution on the

right side of (3.1), conditioned to be < b.)

For v E {0,1,... m - b}, define

(3.13) "-) = inf{n: Vb) = v}.

Since V.(b) -•) is always either 0 or -1,

(3.14) 1~ )>T b ... >T()>T (b
-""m-b •"•m-b-1 1 0

Here is the key result for our justification of (3.1):

Proposition 3.15.

If V() -b and A(b) has the distribution given by (3.12), then A(b) has distribution

(3.12) for all v E {0, 1,.... ,m - b}. In particular, the first coordinate A(b ) of the state

(A (b), 0) where absorption occurs has distribution (3.12).
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Proof.

Define {Bn,6b)) 'I to be a Markov chain on the state space { 1, 2, ... , b} which acts like

a non-stopped version of A(nb). Thus, the transition probabilities for the B$b) chain are

(3.16) P{B,+) =a' B$,6 = a

(b) P{KAb>a} if a'=a+l
a P{KAb>a)

= 0 otherwise.

It is well-known (and trivial to check) that the stationary distribution of this chain is

P{K > al P{K > a}
(3.17) -= Kb - P{K ab < a < b.

bP KŽj E(K Ab)'SP{K > i}

Define another Markov chain (B 6(b), WV6b) by having B$(,) as above and the Wnb)'s a

sequence of Bernoulli random variables. Set Wb)- 1. Conditional on the entire path

(b) Wb)b=,

of the B, chain, the w(•b)'s, n> 2, are to be independent, with

(3.18) p{W-(b) l=B1()I = 1 p{fr(b) = 0IB(b)} = d

m -- Bn(b) + 1

for some constant d, 0 < d < m - b.

Now consider the "embedded chain" whose consecutive states are the consecutive

states of the (Bn(b), Wn(b)) chain at ,vhich Wn(6 ) = 1. (The times at which Wn(b) = 0 are

skipped.) The stationary distribution for B(,b) in this embedded chain is
I _ 7_ _ P{K > a}

)emb -a+1 a _ m-a+1 --(3.19) 71:b= , 1< a <Kb.

M + 7Tri EM •'-iPfK > ij
i1i=1

(Note that (3.12) and (3.19) are the same distribution.) The reasoning for (3.19) is as

follows. The stationary distribution of an ergodic Markov chain gives the long-run fraction

of the time that the chain spends in each state. By (3.17), (3.18), and the strong law of
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large numbers, the long-run fraction of the time that the (Bn(b), 1Vn(b)) chain spends in a

state (a, 1) equals
d

m-a+1

Thus, the long-run fraction of the time that the embedded chain spends in a state (a, 1) is

given by (3.19).

Recall that if the starting state of an ergodic Markov chain is chosen according to

the stationary distribution, then the state one time unit later will also have the stationary

distribution.

Now compare the (A(b), Vnb)) chain with the (Bnb), Wnb) chain. The differences V(b) -

n ) are Bernoulli random variables. For n < T

P1v(0) -V(b) - A(bh,A = rn - b

n-1 n n- nJ rnm-An +1'

which looks like (3.18) with d = m - b. Thus, up until time

T(b) = inf{n = V(b) - V(b) = 1},
TM--b-1 = n I=n--1 n

(A b), V•b) - 1,(b)) is a chain which acts just like (B(b), W(¶b)). Since A(b) corresponds
rn-b--1

to the second value of Bn(b) in the embedded chain, A(b) will have the stationary

distribution (3.12) = (3.19) if A(b) starts out in this stationary distribution.

It follows in the same way that A(6) has distributiun (3.12) ii P) has distribution

(3.12). Thus, Proposition 3.15 follows by induction.

Now the idea is to show that, with high probability, (An, Vn) and Anb), V~b)) can be

coupled Lo as to end up at the same absorbing state. We start by choosing a starting state

for the (An Vnb) chain as described above, with V(b) = m - b. Then we let the (An, Vn)

chain (which always starts in state (1, rn- 1)) run until Vn = m -b, without the (A4), Vn(6))

chain moving. Once the chains are on the same V-level, we can sequentially choose one

or the oth~er chain to take a step, with the goal of course being to get them to inhabit the

same state at the same time. Or, we can let both chains move simultaneously, with the

transitions for the two chains being dependent if we want. The requirement is only that,
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each time a chain takes a step, it must do so according to its own transition probabilities;

this will guarantee that the path of each individual chain has the right probabilities. (In

particular, the distribution of the absorbing state will be correct.) If we can get the

two chains to meet, we couple them so that they move together. Since the transition

probabilities are the same as long as A, and An) are < b, the chains stay coupled as long

as the common A-coordinate is < b. A coupling can fall apart, however. If the common

A-value of the two coupled chains reaches b, then with probability cb the chains will be

decoupled after the next step. If one chain has its V coordinate decrease before coupling

is achieved on a common V-level, we just leave this chain alone for a while and run the

other chain until its V coordinste also drops, after which we try to achieve a coupling at

this next lower V-level.

It does not seem easy to describe (or determine) optimal coupling schemes. However,

even very simple-minded strategies can sometimes have very high probabilities of successful

coupling.
Let Aoo = AT6 and Ab) = A(b) denote the A-values of the absorbing states for the

two Markov chains. Let

in

tIP{A. E } -P{A•) E 11 = 1 IP{AO = j} - P{Al) = j}1
j•1

denote the total variation distance between the distributions of Ac and A00

Proposition 3.20.

If P{K > b} 0 0, then

IIP{Af E "} - P{A() E })11- < 2 exp(- m- 2b) < 15e-m/b,

where the distribution of A0) is given by the right side of (3.12).

Proof.

The total variation distance is obviously bounded by twice the probability that the

An and Anb) chains are not coupled when they are absorbed. (cf Lindvall (1992), page 12.)
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Here is a coupling strategy which has probability less than e(- ,- 2b )that the chains

are not coupled at absorption. For the (at most) b possible states in Sm with V coo-dinate

v, order the states as follows:

(2, v) --< (3, v) - ..- (b, v) -, lv).

When both chains have their V coordinates equal to v, run the chain which is "behind"

according to this ordering and leave the other chain alone. If the chains meet, couple

them. (Since A,, > b is impossible, the coupling will not be broken later.) If one chain's

V coordinate decreases (by 1), run the other chain until its V coordinate decreases by 1

also.

If no decrease in a V coordinate occurs for the first b- 1 steps taken when the Markov

chains are both on V-level v, then the chains are guaranteed to couple on this V-level.

Each time a chain takes a step starting on V-level v, the probability that its V coordinate

will not decrease is at least rn-b (See (3.8).) Thus, the probability of no coupling on

V-level v is at most m (- b- v)b_1.
rn-b

The probability that coupling never occurs on any of the V-levels m - b, m - b - 1,...,2, 1

is at most

m-b -b r-b-1,•-":)11 -{1(,--- ' r 1- 1-(m ,-• b)1-1}
rn-b ~ 17

V=1 i=0

m-b-1

<exp{- E (• •-)b-1} since 1 - x < e-'.
i=O -b

But
m--b-, m-b

(3.22) 2 b= E( )b-1

i=-0 m=0--

If m -b rn-2b
> (m - b) xb-ldx, -- 1 b b

12



Together, (3.21) and (3.22) impiy that exp(-'-b-2) bounds the probability of the

chains not being coupled at absorption.

We will see that Proposition 3.20 still holds even when P{K, > b} > 0, provided we

add 2P{max K, > b} onto the right side of the inequality in Proposition 3.20. To bound
i<xP{ n_<max i > b}, it will help to have a bound on X.

If we let r be the number of single-ball draws (with balls replaced after each draw)

needed to see every ball at least once (as in Section 2), then it is obvious that P{X > t} <

P{r > t} for all t. (Recall we assume P{K > 1} = 1.)

Lemma 3.23. P{r > m 2 } < 2me-/2.

Proof.

As was mentioned just before formula (2.1), r is a sum of independent geometric

(MZ) random variables, j = 0,1,...,m - 1. Thus r has factorial moment generating

function

m-js rm (m-i)sj=O i=

Setting s = 1 + -L, we get

p 1 1
1 .
\ .. ri +

E( l+ 1-•) =III+ 2n

2 1 +2im 2mz*i=1
m m

< 1+ 2FMi -- m2i

=H 1 + 2i _-1 - 2m
i= 1

< exp ( - )
1 1n

exp(-: + E 1i--- ).

13



But '" 1 1 1 1
i=]

Z< 2i-13 52m- 1

4 1 ~12 0
< +-I1-dx

3 2j 4 X
1

< 1 + - log m.
2

Thus,

E(1 + < (me)".
2m'

However,
n m2 ~,-1-t \mI _ 2

2

(since log (1+ x) > x - for 0< 1 <1).
2

Thus, by the Markov inequality,

P{r Ž m2} <(me)!• -m e

Corollary 3.24. P{X > m 2 < 2m'e-m/2.

Proposition 3.25.

If P{K > b} <e , then

IiP{A E. - PA•) E "lJ < 15 e--m/ + 2M2._ + 4m2 -m/2.

Proof.

Use the same coupling strategy as in the proof of Proposition 3.20. Expression (3.21)

(and therefore 3e-'m/b) bounds the probability of the event "no (initial) coupling occurs

and max Ki < b." But by Corollary 3.24,
i<x

(3.26) P{maxK, > b) <:•M 2 P{K > bl + P{X > M 21

2 - /2
m e+r3m2em

14



Thus the probability of "no (initial) coupling occurs or max Ki > b" is bounded byi<X

15 -mlb 2m/
(3.27) e +M + 2me-m/2.

Note that a coupling, once made, is never broken on {max Ki _< b}. Thus, (3.27) bounds

the probability that the (An, V,) and (A Vb) chains are not coupled at absorption.

Multiplying (3.27) by 2 gives the desired bound on the total variation distance.

El

If the hazard function ha of the Ki's is bounded below, a different coupling rule

sometimes works better than the one used above. The bound in the next proposition

should be particularly good if the hazard function ha is (approximately) constant, so that

the Ki's are (approximately) geometric random variables.

Proposition 3.28.

If the hazard function ha of the Ki's is bounded below by 6 > 0 for a < b, and if

(m - b)b > 1, then

+b 6)1 tm-b -M2M 2 (1
IP'{AOO E -} - P{A E "}l -5 6 (i1 + 6)1+6 +4m me-ml+2 + 6)b.

Reme:.. If the Ki's q,-e geometric (1) and m - 100, then taking b = 62 and 6 = causeý.

the bound "n Propcoition 3.28 to equal 1.08 x10- 14 .

Proof.

Again, if the Markov chains are on different V-levels, run only the one on the higher

V-level until it drops down to the V-level where the other is. When both chains are on

the same V-level, the strategy here will be to have the chains move simultaneously and

dependently. The goal will be to get both chains to jump to state (1, v) at the same time,

or to jump to state (1,v - 1) at the same time.

Lemma 3.29. Suppose the (A,,V,) and (A.),V,( )) chains are both on V-level v in

different states. Then by having the chains take dependent, simultaneous steps, it is
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possible to make the (conditional, given the past) probability of the event "An does not

exceed b and the chains don't couple on or before the first time that at least one chain

drops to V-level v - 1" less than or equal to "
V+(rn--)6"

Proof of Lemma 3.29.

We need to describe the dependence between the next step of the (An, Vn) chain
and the next step of the , V(b)) chain. We first determine the next A values. By

assumption, when An < b each chain has probability > 6 of having its A coordinate jump

to 1 on the next step. If An = b, then An+ 1 will either equal 1 or b+ 1, and the (An b))

chain of course still has probability > 6 of the next A value being 1.

Thus, when An < b we can choose the next A values in such a way that the event
"either A,+, > b, or both chains have their next A values equal to 1" has probability > 6.

After determining the new A values we determine the new V values. If both new A values

are 1, then for both chains the conditional probability is ,n-v that the new V value is v
mmand -L that the new V value is v - 1. Thus, when both new A values are 1, we can choose

the new V values to be equal as well, so the chains couple. Providing that the new A

value for the (An, Vn) chain is < b, the conditional probability (given its new A value) for

each individual chain to drop to V-level v - 1 is < m--b. Thus, we can make the new V

values dependent in such a way that the probability of a V-level decrease in either chain

is < •-•_ b(unless A,+i > b, in which case we don't care about V values.)

If the consecutive steps of the two chains are made dependent as described in the

previous paragraph, then the event "the An's do not exceed b and the chains do not

couple on or before the first time a chain leaves V-level v" has probability less than or

equal to
V

rn-b V
b+ v + (m - b)6"

Continuation of Proof of Proposition 3.28.

Lemma 3.29 immediately implies that the event "the chains never couple (on any
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V-level) and A, never exceeds b (on any V-level)" has probability less than or equal to

(3.30) m-b v (m - b)!r{(m - b)b + 1)
.0 v+(m- b)65 r = {(m-b)(l +6)+1}V--1

where F(.) is the gamma function. To estimate (3.30), we can use

P(x + 1) = V½7 xZ2e- eG(z)/1 2 z > 0,0 < 9(x) • 1.

(See the Encyclopedia of Statistical Sciences, (1988), Wiley, Kotz and Johnson, Eds., vol. 8,

p. 779.) Applying this form of Stirling's formula to (3.30) yields

1- +m - b )V < ,/27r( rn - b) (1 '-b+ exp{f - )611 V { 66 rn- (
(1=)1+ e m{ - b)6

< 3• +6)1+6 if (m - b)6 > 1.

Since an achieved coupling is never broken on {max Ki < b}, the probability of the chains
iCX

not being coupled at absorption is bounded by

3 Vr-- + PjmaxKj > b).3vr•:-1(1 + 6)1+6 { K i

Multiplying by 2 and applying Corollary 3.24 (as in (3.26)) produces the bound in

Proposition 3.28.

4. Bounds on the Approximation Error

Using the bounds on the total variation distance I!P{Aoo E } -PA E "})I given

in Section 3, it is easy to derive bounds on the difference between (1.1) and EX. Recall

again that J equals the random variable AO, from Section 3.

Lemma 4.1. For any b E {1,2,...,m- 1},

1EV - Z E(VIJ = j)P{A () - JlI

f ll A.o E .- PJA (1 ) E 7}ImaxE(ViJ = A

17



where E(VIJ = j) is set equal to 0 when P{K > j} = 0.

Proof.

The left side equals

I E E(VIJ =j)[P{A = j} - P{A() = J]l,
j=l

which is less than or equal to the right side.

Lemma 4.2. For any b E {1,...,m- 1}

mr-I r b-i r

Z ~-~P{K > r) F, m-F+1 ~;PIK > r) -+m- m-r r

b-1
_ m PK> Z)P, {K>i1

i=0 i=0

m-1 r
Fm PI yK>r), F

b-i

'-iP{K > i}
i=O

Remark. The first term in Lemma 4.2 is the approximation (2.9) for EV that we used tom

get (1.1). The second term in Lemma 4.2 equals E E(VIJ = j)P{A'&) = ji.
j=I

Proof.

E m is obviously increasing in r, so the first term between absolute value signs

is larger than the second term. The first numerator is greater than the second numerator,

and the first denominator is greater than the second denominator. Thus, the difference is

less than the difference between numerators divided by the second (smaller) denominator.

18



Proposition 4.3.

The difference between EX and (1.1) is bounded in absolute value by

rn-
min H-!P{A. E .} - PA E - 11 max P{K > fli > j)

O<b<m 2 CIO j>l EI ir=j.

rn-1 rE m'rPI{K >r) m-+ rIn-

,r=b bj= m PIK > ir.- b-E m PI i{ J = -

i=0 -

Proof.

This bound follows from (2.5) and Lemmas 4.1 and 4.2.

E

Now let's specialize to get bounds which are not quite such a horrendous mess like

the bound in Proposition 4.3.

Proposition 4.4.

If P{K > b} = 0, the difference between EX and (1.1) is bounded in absolute value

by
15m/b m(--1) 15m(b - 1)e-m/bT -- b <

2(m - b)EKE: mPK > i}
i=O

Proof.

If P{K > b} =0, then

max -Z > r-P{K >rK j < m(b-1)
i2:1 m-r nm-br'--j

Apply this and Proposition 3.20 to the bound in Proposition 4.3.

0
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Remark. If m = 100 and each K, - 1 is binomial (4, 1½), the second error bound in

Proposition 4.4 equals 1.96 x 10-1 (with b = 5 and EK = 3).

Proposition 4.5.

If P{K > k} K Ce-,k for k < b, C > 0, and a > 0, then the difference between (1.1)

and EX is bounded in absolute value by

S 2 Ceb + m/2 mlog m Ce mlog m 2(~em/+M + 2m e-" + *-(2 E(K Am) E(K Ab)

Remark. If P{K > k} _< Ce-ok for all k, then letting b V G in the Proposition 4.5

bound shows that the approximation error converges to zero faster than exp(-ml/3) as

m --+ 0o.

Proof.

M--1 r-1
max E mP{K> rjK >j} mE -1 < M log M.

ý!>I J. m-r m - rn-

Also,
rn-1 rm--m

S<Ce-ob(m log M) 2,Y-=-b j=1 -'+l-

b-i

EPg>_i ŽE(KAb).Zm-i
i=O

and
Mr-1

S M 2 --- P{K > i} > E(K A m).
i=O 2

Combining these bounds and Proposition 3.25 with Proposition 4.3 proves Proposition 4.5.

Remark. If m = 800 and the Ki's are geometric (1), then taking b = 40 in Proposition 4.5

yields the error bound 0.0016. The next proposition is much more effective for geometric

Ki's.
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Proposition 4.6.

If the hazard function of the distribution of the Ki's

_P{K-"a} _ 0
ha - {K = a} (=: 1 for )

satisfies ha > 6 > 0 for a < m, then the difference between (1.1) and EX is bounded in

absolute value by

[3(m - b)4 { (1_)+6 + 2miem/2 + mn2(1 - 6 )b] m(1--') +(1-)b mlogm 2

3( (1)' +) + J2m (E(K Ab))

Proof.

ha > 6 V a < m implies P{K > rjK > j} • (1 - 6)r-j+l. Thus,

rn-i rn-1i ~-b
m-- m(--1

max L mp{K > rIK > j} <maxm E(1- 6 )r-j+l < 6
>1 j .m -- r ->1 j

Combining this with Proposition 3.28 gives us the first term above as a bound on the first

term in Proposition 4.3. The second term in Proposition 4.6 follows in the same way as

the second term in Proposition 4.5.

n

Remark. If m = 100 and the Ki's are geometric (I), then taking b = 62 and 6 = ½ causes

the bound in Proposition 4.6 to be 5.64 x 10-13.

5. Generalization

Suppose we start with w white balls and m - w red balls in the box. Let Yw,, be the

number of iid samples needed to see (or paint red) n of the white balls. (Thus, X = Yr.,m.)

The formula

w m-1 r
E 1 1PIK > r) ,s -- m-- M +l

(5.1) ,i=w-n+l +1 j=l
- -LP{K>i} [ -_i{

j=0 M- M IK>0
2 i0
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should (usually) be a good approximation for EYW,,f when the first term of (5.1) is large.

The argument for the first term is exactly the same as in Section 2: the numerator is the

expected number of single-ball draws needed to get the required number of white balls, and

the denominator is the expected number of draws needed to complete a sample. The second

term of (5.1) (which is exactly the same as the second term of (1.1)) is again a correction for

the error in the first term caused by "boundary overshoot." In this case, the {(An, Vn)}c

chain of Section 3 starts either in state (1, w) or in state (1, w - 1), depending on whether

the first ball chosen is red or white. The (A., V.) chain is absorbed by the states on V-level

w - n. If a successful coupling can be achieved with high probability between this (An, V,)

chain and an (A~n), VQb)) chain, then the A coordinate of the absorbing state will have a

distribution approximated by (3.12). Providing also that the bound in Lemma 4.2 is small,

the second term of (5.1) will do a good job of correcting the error in the first term.
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Abstract

Suppose a box contains m balls, numbered from 1 to rn. A random number of balls

are drawn from the box, their numbers are noted, and the balls are then returned to the

box. This is done repeatedly, with the sample sizes being iid. Let X be the number of

samples needed to see all the balls. This paper derives a simple but typically very accurate

approximation for EX in terms of the sample size distribution. The justification of the

approximation formula uses Wald's identity and Markov-chain coupling.


